Molecular and functional characteristics of heart-valve interstitial cells.

نویسندگان

  • Adrian H Chester
  • Patricia M Taylor
چکیده

The cells that reside within valve cusps play an integral role in the durability and function of heart valves. There are principally two types of cells found in cusp tissue: the endothelial cells that cover the surface of the cusps and the interstitial cells (ICs) that form a network within the extracellular matrix (ECM) within the body of the cusp. Both cell types exhibit unique functions that are unlike those of other endothelial and ICs found throughout the body. The valve ICs express a complex pattern of cell-surface, cytoskeletal and muscle proteins. They are able to bind to, and communicate with, each other and the ECM. The endothelial cells on the outflow and inflow surfaces of the valve differ from one another. Their individual characteristics and functions reflect the fact that they are exposed to separate patterns of flow and pressure. In addition to providing a structural role in the valve, it is now known that the biological function of valve cells is important in maintaining the integrity of the cusps and the optimum function of the valve. In response to inappropriate stimuli, valve interstitial and endothelial cells may also participate in processes that lead to valve degeneration and calcification. Understanding the complex biology of valve interstitial and endothelial cells is an important requirement in elucidating the mechanisms that regulate valve function in health and disease, as well as setting a benchmark for the function of cells that may be used to tissue engineer a heart valve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells.

Interstitial cells of heart atrioventricular and sigmoid valves were examined in several laboratory animals (rabbit, hamster, rat, and mouse) and in humans. These cells constitute a large fraction of the total cell population of the valve; in mouse atrioventricular valves, they amount to approximately 30% of the volumetric density. By their ultrastructural features and functional properties, va...

متن کامل

Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves.

BACKGROUND The mechanisms of extracellular matrix changes accompanying myxomatous valvular degeneration are uncertain. METHODS AND RESULTS To test the hypothesis that valvular interstitial cells mediate extracellular matrix degradation in myxomatous degeneration by excessive secretion of catabolic enzymes, we examined the functional characteristics of valvular interstitial cells in 14 mitral ...

متن کامل

Prosthetic valve endocarditis caused by multidrug-resistant Candida albicans in a patient with myelodysplasia syndrome: A case report and literature review

Background and Purpose: Candida endocarditis is an infrequent disease with a high mortality rate, which commonly occurs in immunosuppressed patients with cardiac valve replacement. We reported a 70-year-old woman diagnosed with Candida prosthetic valve endocarditis (PVE). This study also involved a review of all published cases of Candida PVE from 1970. Case report: Herein, we reported a 70-ye...

متن کامل

Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets

Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellul...

متن کامل

Fabrication and characterization of nanofibrous tricuspid valve scaffold based on polyurethane for heart valve tissue engineering

Objective(s): Tissue engineering represents a new approach to solve the current complications of the heart valve replacements by offering viable valve prosthesis with growth and remodeling capability. In this project, electrospinning and dip coating techniques were used to fabricate heart valve constructs from medical grade polyurethane (PU). Methods: Fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 362 1484  شماره 

صفحات  -

تاریخ انتشار 2007